Discussion of “Technology Shocks: Novel Implications for International Business Cycles”
Andrea Raffo

Nan Li
Ohio State University

NBER-IFM July 2009
Interesting and neat paper, introducing the new view of technology shocks (neutral + IST) in the closed-economy literature to open economy.
Overall

- Interesting and neat paper, introducing the new view of technology shocks (neutral + IST) in the closed-economy literature to open economy.

- Contributions:
 - Introducing IST can go quite far: it improves the IRBC model in several dimensions
 - Introduces potentially relevant channel of international technology transmission
 - Similar to “taste/demand shock” (Stockman and Tesar 1995), but with data discipline

Nan Li (Ohio State University)
Discussion of Raffo (2009)
NBER-IFM July 2009
Interesting and neat paper, introducing the new view of technology shocks (neutral + IST) in the closed-economy literature to open economy.

Contributions:

- Introducing IST can go quite far: it improves the IRBC model in several dimensions
- Introduces potentially relevant channel of international technology transmission
- Similar to “taste/demand shock” (Stockman and Tesar 1995), but with data discipline

My goal:

- Investigate the role of model elements, mechanisms, and explore other implications of the model (esp. cross-country comovement)
- Questions and suggestions on the estimation of IST shock, along with a few other comments
International Business Cycle puzzles (Backus, Kehoe, Kydland 1995)

- Prices:
 - excessive volatility in RER
 - excessive volatility in TOT
 - \(\text{Corr}(\hat{c} - \hat{c}^*, \hat{RER}) < 0 \) (Backus-Smith puzzle)
 - \(\text{Corr}(\hat{y} - \hat{y}^*, \hat{TOT}) < 0 \)
Investment Specific Technology Shocks Improve IRBC

International Business Cycle puzzles (Backus, Kehoe, Kydland 1995)

- **Prices:**
 - excessive volatility in RER
 - excessive volatility in TOT
 - $\text{Corr}(\hat{c} - \hat{c}^*, \hat{RER}) < 0$ (Backus-Smith puzzle)
 - $\text{Corr}(\hat{y} - \hat{y}^*, \hat{TOT}) < 0$

- **Quantities**
 - $\text{Corr}(i, i^*) > 0, \text{Corr}(l, l^*) > 0$ (international comovement puzzle)
 - $0 < \text{Corr}(c, c^*) < \text{Corr}(y, y^*)$ (consumption/output anomaly)
IST shocks help to resolve the Price Anomaly

- **Prices:**
 - excessive volatility in RER
 - excessive volatility in TOT
 - $Corr(\hat{c} - \hat{c}^*, RER) < 0$ (Backus-Smith puzzle)
 - $Corr(\hat{y} - \hat{y}^*, TOT) < 0$

- **Quantities**
 - $Corr(i, i^*) > 0$, $Corr(l, l^*) > 0$ (international comovement puzzle)
 - $0 < Corr(c, c^*) < Corr(y, y^*)$ (consumption/output anomaly)
The model

Minimum perturbation from prototypical IRBC (BKK)

- Low elasticity of substitution: $\sigma = 0.5$
- GHH preferences + investment adjustment cost
- Capital utilization
- IST + neutral technology innovations
IST shocks

- Neutral technology innovations affect all capital (as well as labor)
- IST innovations affect output only through the formation of new capital stock
- Since the old capital stock is unaffected, the economy must invest to realize the benefits
$u(C, N) = \log(C) - N$

$C + \frac{I}{e^v} = Y$

- $u(C, N) = \log(C) - N$
- $C + \frac{I}{e^v} = Y$

![Graphs showing real price of investment, labor productivity in consumption units, per capita hours worked, output in consumption units, consumption, and investment with I-shock and N-shock labels.](image-url)
Elements of this model

- **Open economy:** \(C_t + \frac{I_t}{e^{u_t}} = G(A_t, B_t) = q^A_t Y_t - NX_t \)
 - IST does not affect output directly, demand shock \(\Rightarrow q^A \uparrow \Rightarrow \) marginal products of factor inputs in consumption unit \(\uparrow \Rightarrow S \) and \(L \uparrow \)
 - lower investment price \(\Rightarrow S \uparrow \)

- **home bias + low elasticity of substitution** \((\sigma = 0.5) \)
 - resources shift to Home country, optimal to increase import more than export, \(NX \downarrow \)
 - With lower price elasticity, volatility of TOT \(\uparrow \)
Elements of this model

- **Open economy:** \(C_t + \frac{I_t}{e_{vt}} = G(A_t, B_t) = q_t^A Y_t - NX_t \)

- IST does not affect output directly, demand shock \(\Rightarrow q^A \uparrow \Rightarrow \) marginal products of factor inputs in consumption unit \(\uparrow \Rightarrow S \) and \(L \uparrow \)

- lower investment price \(\Rightarrow S \uparrow \)

- **Home bias + low elasticity of substitution** \((\sigma = 0.5) \)

- resources shift to Home country, optimal to increase import more than export, \(NX \downarrow \)

- With lower price elasticity, volatility of TOT \(\uparrow \)
Elements of this model

- **Variant capital utilization**
 - increases MPL, N responds further
 - crucial to generate domestic comovement of C and Y

- **GHH + investment adjustment cost**
 - no wealth effect on labor supply, inducing large response in labor
 - crucial to solve Backus-Smith puzzle
I-shock vs. N-shock in Open Economy

- GDP
- Consumption
- Investment
- Per capita hours worked
- Capital utilization
- Net Export – GDP ratio
- \(q^A \)
- Real exchange rate
- Terms of Trade

\[\text{--- I-shock, --- N-shock} \]
Real Exchange Rate is not volatile enough

- With Law of One Price and only traded goods
 \[
 \widehat{RER} = (1 - 2s)\widehat{TOT}
 \]

- \(s = 0.15 \Rightarrow \text{std}(RER) = 0.7\text{std}(TOT) \)

- data: \(\text{std}(RER) = 1.4\text{std}(TOT) \)

- Introducing deviations from Law of One Price may increase volatility of RER e.g. distribution margin, nontraded goods
Question 1: What about cross-country comovement?

I-shock alone generates *negative* cross-country correlation in C, Y, I, L, while N-shock generates *positive* correlations in C, Y, L.

![Graphs showing domestic and foreign output, consumption, investment, and hours worked for Home and Foreign economies with I-shock and N-shock scenarios.](image)
Question 1: What about cross-country comovement?

- This paper considers a combination of I-shock and N-shock to generate positive cross-country comovement in C, Y, L.

- This implies the model’s prediction of cross-country comovement would be sensitive to the relative magnitude and parameterization of the shock processes.

- It would be interesting to see whether introducing I-shock mitigates or exacerbates the cross-country consumption-output anomaly.
Question 2: estimating I-shock

It is unclear how the joint process of neutral and IST shocks is estimated.

Separate estimation of σ_v, σ_z and $\sigma_{z,v}$ to hit different targets – Should be jointly estimated at the same time. $\sigma_v = 0.00752$.

Using data on P_I/P_C (1947:1-2005:4), $\sigma_v = 0.00229$.

The choice of persistence parameter seems to be arbitrary: $\rho_{vv} = \rho_{zz} = 0.906$, which is identical to the TFP estimation in BKK.

Again, data suggests $\rho_{vv} = 0.84$.

$\sigma_{z_i,v_i} = 0.40$.

Why should the innovations to all capital and labor positively correlated to innovations only applied to new capital formation? Is there empirical support?
Question 2: estimating I-shock

It is unclear how the joint process of neutral and IST shocks is estimated

- Separate estimation of σ_v, σ_z and $\sigma_{z,v}$ to hit different targets
 - Should be jointly estimated at the same time

\[\sigma_{v} = 0.00752 \]

Using data on $\frac{P_I}{P_C}(1947:1-2005:4)$,
\[\sigma_v = 0.00229 \]

The choice of persistence parameter seems to be arbitrary:
\[\rho_{vv} = \rho_{zz} = 0.906 \], which is identical to the TFP estimation in BKK.

- Again, data suggests $\rho_{vv} = 0.84$.
\[\sigma_{z,v} = 0.40 \]

- Why should the innovations to all capital and labor positively correlated to innovations only applied to new capital formation? Is there empirical support?
Question 2: estimating I-shock

It is unclear how the joint process of neutral and IST shocks is estimated

- Separate estimation of σ_v, σ_z and $\sigma_{z,v}$ to hit different targets
 - Should be jointly estimated at the same time

- $\sigma_v = 0.00752$
 - Using data on P_I/P_C (1947:1-2005:4), $\sigma_v = 0.00229$

- Why should the innovations to all capital and labor positively correlated to innovations only applied to new capital formation? Is there empirical support?
Question 2: estimating I-shock

It is unclear how the joint process of neutral and IST shocks is estimated

- Separate estimation of σ_v, σ_z and $\sigma_{z,v}$ to hit different targets
 - Should be jointly estimated at the same time

- $\sigma_v = 0.00752$
 - Using data on P_I/P_C (1947:1-2005:4), $\sigma_v = 0.00229$

- The choice of persistence parameter seems to be arbitrary:
 \[\rho_{vv} = \rho_{zz} = 0.906, \text{ which is identical to the TFP estimation in BKK.} \]
 - Again, data suggests $\rho_{vv} = 0.84$
Question 2: estimating I-shock

It is unclear how the joint process of neutral and IST shocks is estimated

- Separate estimation of σ_v, σ_z and $\sigma_{z,v}$ to hit different targets
 - *Should be jointly estimated at the same time*

- $\sigma_v = 0.00752$
 - Using data on P_I/P_C (1947:1-2005:4), $\sigma_v = 0.00229$

- The choice of persistence parameter seems to be arbitrary:
 $\rho_{vv} = \rho_{zz} = 0.906$, which is identical to the TFP estimation in BKK.
 - *Again, data suggests* $\rho_{vv} = 0.84$

- $\sigma_{z_i,v_i} = 0.40$
 - *Why should the innovations to all capital and labor positively correlated to innovations only applied to new capital formation? Is there empirical support?*
Questions about calibration

- Difficulties of using direct data on I-shock and TFP
 - lack of quality adjusted investment price data for other countries. Data on investment and consumption deflators exists.
 - It would be useful to explore the model behavior using existing data evidence as starting points
Questions about calibration

- Difficulties of using direct data on I-shock and TFP
 - lack of quality adjusted investment price data for other countries. Data on investment and consumption deflators exists.
 - It would be useful to explore the model behavior using existing data evidence as starting points.

- Alternatively, use GMM or Bayesian estimation utilizing data on quantity/prices to estimate shocks and the key parameter – the elasticity of substitution.
Question 3: what is the implication on stock prices?

- FOCs imply shadow price of an additional unit of capital carried over to $t+1$:

$$p_{k,t} = e^{-v_t} [1 - \Psi'(I_t/K_t)]^{-1}$$

$$p_{k,t} = E_t \frac{u_{c,t+1}}{u_{c,t}} (r_{t+1} + p_{k,t+1}r_{t+1}^k)$$

where $r_{t+1}^c = \partial Y_{t+1}/\partial K_{t+1}$, $r_{t+1}^k = \partial K_{t+2}/\partial K_{t+1}$
Question 3: what is the implication on stock prices?

- FOCs imply shadow price of an additional unit of capital carried over to t+1:

\[p_{k,t} = e^{-v_{t}}[1 - \Psi'(I_{t}/K_{t})]^{-1} \]

\[p_{k,t} = E_{t}\frac{u_{c,t+1}}{u_{c,t}}(r_{t+1}^{c} + p_{k,t+1}r_{t+1}^{k}) \]

where \(r_{t+1}^{c} = \frac{\partial Y_{t+1}}{\partial K_{t+1}} \), \(r_{t+1}^{k} = \frac{\partial K_{t+2}}{\partial K_{t+1}} \)

- IST triggers two offsetting effects on the stock price

 - It may be interesting to explore whether the model, with a proper adjustment cost parameter, can generate the procyclical stock price w.r.t. the IST shock
Question 4: how important are GHH preferences?

- Consider Jaimovich-Rebelo (2008) utility function

$$u(C_t, N_t) = \frac{(C_t - \psi N_t^\theta X_t)^{1-\sigma} - 1}{1 - \sigma}$$

$$X_t = C_t^\gamma X_{t-1}^{1-\gamma}$$

- $\gamma = 0$, GHH
- $\gamma = 1$, King, Plosser and Rebelo (1988)
- Suggestion: parameterize the strength of the short-run wealth effects on the labor supply, γ, to gauge the importance of GHH on the behavior of the model.

- Downside of GHH: high $\text{Corr}(\text{prod}, N)$, while data: -0.04
Data on real variable: used CPI (?) as deflator. However, model counterpart, should be deflated by the price for the nondurable goods and service when there is IST.

One sector model implicitly assumes perfect mobility of factors across consumption and investment production.

How is IST introduced into the model
- Endogenous vs. exogenous IST
- Suppose there are nontradable and tradable sectors, with different capital share. TFP increases in tradable sector will manifest itself as IST shock, but generates opposite effect on terms of trade.
Summary

- Theoretically explored the role of capital embodied technology changes as a potential driving force in open economy
- Model neatly nests a few key elements and improves standard IRBC
- Providing further and deeper empirical understanding of I-shock in an open economy would be valuable